Pre-Calculus: Completing the Square Review

Completing a perfect square trinomial allows you to factor the completed trinomial as the square of a binomial.

Start with the expression $x^2 + bx$. Add $\left(\frac{b}{2}\right)^2$. Now the expression is $x^2 + bx + \left(\frac{b}{2}\right)^2$,

which can be factored into the square of a binomial: $x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$.

To complete the square for an expression $ax^2 + abx$, first factor out a. Then find the value that completes the square for the factored expression.

Problem

What value completes the square for $-2x^2 + 10x$?

Think

Write the expression in the form $a(x^2 + bx)$.

Write

$$-2x^2 + 10x = -2(x^2 - 5x)$$

Find
$$\frac{b}{2}$$
.

$$\frac{b}{2} = \frac{-5}{2} = -\frac{5}{2}$$

Add
$$\left(\frac{b}{2}\right)^2$$
 to the inner expression to complete the square.

$$-2\left[x^{2}-5x+\left(-\frac{5}{2}\right)^{2}\right] = -2\left(x^{2}-5x+\frac{25}{4}\right)$$

Factor the perfect square trinomial.

$$\rightarrow$$
 $-2\left(x-\frac{5}{2}\right)$

Find the value that completes the square.

$$-2\left(\frac{25}{4}\right) = -\frac{25}{2}$$

Exercises

What value completes the square for each expression?

1.
$$x^2 + 2x$$

2.
$$x^2 - 24x$$

3.
$$x^2 + 12x$$

4.
$$x^2 - 20x$$

5.
$$x^2 + 5x$$

6.
$$x^2 - 9x$$

7.
$$2x^2 - 24x$$

8.
$$3x^2 + 12x$$

9.
$$-x^2 + 6x$$

10.
$$5x^2 + 80x$$

11.
$$-7x^2 + 14x$$

12.
$$-3x^2 - 15x$$

You can easily graph a quadratic function if you first write it in vertex form. Complete the square to change a function in standard form into a function in vertex form.

Problem

What is $y = x^2 - 6x + 14$ in vertex form?

Think

Write

Write an expression using the terms that contain x.

Find
$$\frac{b}{2}$$
.

Add
$$\left(\frac{b}{2}\right)^2$$
 to the expression to complete the square.

$$x^{2} - 6x$$

$$\frac{b}{2} = \frac{-6}{2} = -3$$

$$x^2 - 6x + (-3)^2 = x^2 - 6x + 9$$

$$y = x^2 - 6x + 9 + 14 - 9$$

$$y = (x - 3)^2 + 14 - 9$$

$$y = (x - 3)^2 + 5$$

Exercises

Rewrite each equation in vertex form.

13.
$$v = x^2 + 4x + 3$$

15.
$$y = 2x^2 + 4x - 10$$

17.
$$v = x^2 + 8x + 13$$

19.
$$y = -x^2 + 10x - 18$$

21.
$$v = 2x^2 + 4x - 3$$

14.
$$v = x^2 - 6x + 13$$

16.
$$y = x^2 - 2x - 3$$

18.
$$y = -x^2 - 6x - 4$$

20.
$$y = x^2 + 2x - 8$$

22.
$$y = 3x^2 - 12x + 8$$