\qquad Period: \qquad
Remember: The equations for a circle is $(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$. For review, check the class website, lesson 1.9.
Note: If r^{2} is not a perfect square then leave r in simplest radical form. Use the decimal equivalent for graphing. Example: $\sqrt{12}=2 \sqrt{3}=3.46$

1) Graph the following circle:

a. $(x-3)^{2}+(y+1)^{2}=4$

b. $(x-2)^{2}+(y-5)^{2}=9$

c. $(y+4)^{2}+(x+2)^{2}=16$

2) For each circle: Identify its center and radius.
a. $(x+3)^{2}+(y-1)^{2}=4$
b. $x^{2}+(y-3)^{2}=18$
c. $(y+8)^{2}+(x+2)^{2}=72$

Center: \qquad
Radius: \qquad
Center: \qquad
Radius: \qquad

Center: \qquad
Radius: \qquad
3) Write the equation of the following circles:

4) Give the equation of the circle that is tangent to the \mathbf{y}-axis and center is $\mathbf{(- 3 , 2)}$.
5) Compare and contrast the following pairs of circles
a. Circle \#1: $(x-3)^{2}+(y+1)^{2}=25$
b. Circle \#1: $(y+4)^{2}+(x+7)^{2}=6$
Circle \#2: $(x+1)^{2}+(y-2)^{2}=25$
Circle \#2: $(x+7)^{2}+(y+4)^{2}=36$

Putting Equations in Standard Form

Example 1: $x^{2}+y^{2}+6 x-8 y-11=0$
Example 2: $x^{2}+y^{2}-2 x+6 y-10=0$
$\left(x^{2}+6 x\right)+\left(y^{2}-8 y\right)=11$
$\left(x^{2}+6 x+9\right)+\left(y^{2}-8 y+16\right)=11+9+16$
$(x+3)^{2}+(y-4)^{2}=36$
Center: $(-3,4)$ Radius: 6
Center:
Radius:
6) Find the standard form, center, and radius of the following circles:
6a) $x^{2}+y^{2}-4 x+8 y-5=0$
6b) $4 x^{2}+4 y^{2}+36 y+5=0$

Center: \qquad
Radius: \qquad
Center: \qquad
Radius: \qquad
7) Graph the following circles:

7a) $x^{2}-2 x+y^{2}+8 y-8=0$

8) Give the equation of the circle whose center is $(5,-3)$ and goes through $(2,5)$

7b) $x^{2}+y^{2}-6 x+4 y-3=0$

9) Give the equation whose endpoints of a diameter at $(-4,1)$ and $(4,-5)$
10) Give the equation of the circle whose center is $(4,-3)$ and goes through $(1,5)$
11) Give the equation whose endpoints of a diameter at $(-3,2)$ and $(1,-5)$

