

Properties of Logarithms
Write each expression as a single logarithm.

1. $\log _{5} 4+\log _{5} 3$
$\log _{5}(4.3)$
$\log _{5} 12$
2. $\log _{2} 4+\log _{2} 2-\log _{2} 8$
$\log _{2} 4 \cdot 2-\log _{2} 8 \quad \log _{2} \frac{7}{3}+\log 6$
$\log _{2} 8-\log _{2} 8$
$\log _{2} \frac{8}{8}=\log _{2} 1$
3. $\log 7-\log 3+\log 6$

$$
\log \frac{7}{3}+\log 6
$$

$$
\log \frac{7}{3} \cdot \frac{6^{2}}{1}
$$

$$
\log 14
$$

7. $\log _{3} 4 x+2 \log _{3} 5 y$
8. $2 \log 4+\log 2+\log 2$

$$
\begin{array}{ll}
\log _{3} 4 x+\log _{3}(5 y)^{2} & \log 4^{2}+\log 2+\log 2 \\
\log _{3} 4 x+\log _{3} 25 y^{2} & \log 16+\log 2+\log 2 \\
\log _{3}\left[(4 x)\left(25 y^{2}\right)\right] & \log 16 \cdot 2+\log 2 \\
\log _{3}\left(100 x y^{2}\right) & \log 32+\log 2 \\
& \log 32 \cdot 2=\log 64
\end{array}
$$

11. $5 \log x+3 \log x^{2}$

$\log x^{5}+\log x^{6}$

$\log x$
12. $\log 2+\log 4-\log 7$
13. $3\left(4 \log t^{2}\right)$
$12 \log t^{2}$
$\log \left(t^{2}\right)^{12}$
$\log t^{24}$

Expand each logarithm. Simplify if possible.
17. $\log _{2} \frac{x}{y z}$
$\log _{2} x-\log _{2} y z$

$$
\log _{2} x-\left(\log _{2} y+\log _{2} z\right)
$$

$$
\begin{aligned}
& \frac{19 \log \sqrt[{\sqrt{w w}}]{5 v}}{\sqrt{5}}=\log \left(\frac{2 v s t}{5 \omega}\right)^{1 / 2}=1 / 2\left(\log \frac{2 r s t}{5 \omega}\right) \\
& \frac{1}{2}[\log 2 r s t-\log 5 \omega] \\
& \frac{1}{2}[(\log 2+\log r+\log 5+\log t)-(\log 5+\log \omega)]
\end{aligned}
$$

21. $\log _{5} 5 x^{-5}$
22. $\log _{4}(3 x y z)^{2}$
$\log _{5} 5+\log _{5} x^{-5}$
$\log _{5} 5+(-5) \log _{5} x$
$\log _{5} 5-5 \log _{5} x$

$$
\begin{aligned}
& \text { Change of base formal } \\
& \log _{b} x=\frac{\log _{c} x}{\log _{c} b} \rightarrow \frac{\log x}{\log ^{b}} \\
& c=10 \text {, to use calculator }
\end{aligned}
$$

Use the Change of Base Formula to evaluate each expression. Round your answer to the nearest thousandth.
25. $\log _{3} 5$

$=1.465$
27. $\log _{6} 17$
$\frac{\log 17}{\log 6}=1.581$
$\rightarrow 3 \rightarrow \log \rightarrow=$

Use the properties of logarithms to evaluate each expression.
29. $\log _{2} 160-\log _{2} 5$
31. $\log _{7} 14-\log _{7} 2$

$$
\begin{aligned}
& \log _{2} \frac{160}{5} \\
& \log _{2} 32=\frac{\log 32}{\log 2}=5
\end{aligned}
$$

$$
\log _{7} \frac{14}{2}=\log _{7} 7=1
$$

$$
\begin{aligned}
& 2^{x}=2^{5} \\
& \log _{2} 2^{x}=\log _{2} 2^{5} \\
& x \log _{2} 2=5 \log _{2} 2 \\
& x=5
\end{aligned}
$$

33. $\frac{1}{4} \log _{3} 162-\log _{3} \sqrt[4]{2}$

$$
\begin{gathered}
\log _{3}(162)^{1 / 4}-\log _{3} \sqrt[4]{2} \\
\log _{3} \sqrt[4]{162}-\log _{3} \sqrt[4]{2} \\
\log _{3} \frac{\sqrt[4]{162}}{\sqrt[4]{2}}=\log _{3} \sqrt[4]{81}=\log _{3} 3=1 \\
9^{\prime 9} 9 \\
3^{\prime 3} 33
\end{gathered}
$$

