ake note

Properties Properties of Logarithms

For any positive numbers m, n, and b where $b \neq 1$, the following properties apply.

Product Property $\log_b mn = \log_b m + \log_b n$

Quotient Property $\log_b \frac{m}{n} = \log_b m - \log_b n$

Power Property $\log_b m^n = n \log_b m$

Properties of Logarithms

Write each expression as a single logarithm.

1.
$$\log_3 4 + \log_3 3$$

3.
$$\log_2 4 + \log_2 2 - \log_2 8$$

13. log 2+ log 4- log 7 log x + log (x) log 8 - log 7 log x + log x log 5 log x 1 log x 1

15. 3(4 log t²) 12 (og t²)
log (t²)
log t² Expand each logarithm. Simplify if possible.

17.
$$\log_2 \frac{x}{yz}$$

19.
$$\log \sqrt{\frac{2rst}{5w}} = \log \left(\frac{2vst}{5w}\right)^{VL} = \frac{1}{2} \left(\log \frac{2rst}{5w}\right)$$

$$\frac{1}{2} \left[\log 2vst - \log 5w\right]$$

$$\frac{1}{2} \left[\log 2 + \log v + \log s + \log t\right] - (\log 5 + \log w)$$

21.
$$\log_5 5x^{-5}$$

Change of base formula

log x =
$$\frac{\log x}{\log c}$$
 > $\frac{\log x}{\log b}$

C=10, to use calculator

Use the Change of Base Formula to evaluate each expression. Round your answer to the nearest thousandth.

Use the properties of logarithms to evaluate each expression.

$$\log_2 \frac{160}{5}$$
 $\log_2 32 = \frac{\log_3 7}{\log_2 7} = 5$

31.
$$\log_{7} 14 - \log_{7} 2$$

33.
$$\frac{1}{4}\log_3 162 - \log_3 \sqrt[4]{2}$$

$$| \log_3 (|62)^{4} - | \log_3 \sqrt[4]{2}$$

$$| \log_3 \sqrt{|62|} - | \log_3 \sqrt[4]{2}$$

$$| \log_3 \sqrt{|62|} - | \log_3 \sqrt[4]{8} | = | \log_3 \sqrt[3]{3}$$

