9.3 Parabola

Definition of a Parabola

A **parabola** is the set of all points in a plane that are equidistant from a fixed line, the **directrix**, and a fixed point, the **focus**, that is not on the line (see **Figure 9.29**).

Standard Forms of the Equations of a Parabola

The standard form of the equation of a parabola with vertex at the origin is

$$y^2 = 4px \qquad \text{or} \qquad x^2 = 4py.$$

Figure 9.31(a) at the top of the next page illustrates that for the equation on the left, the focus is on the *x*-axis, which is the axis of symmetry. **Figure 9.31(b)** illustrates that for the equation on the right, the focus is on the *y*-axis, which is the axis of symmetry.

EXAMPLE 1 Finding the Focus and Directrix of a Parabola

Find the focus and directrix of the parabola given by $y^2 = 12x$. Then graph the

horizon tal

$$y^2 = 12(3) = 36$$

$$P = 3$$
Focus: (3,0)

Nicertnix: $x = -3$

$$y^2 = 12x$$

$$y = 16 \Rightarrow (3,6)$$

$$y = 16 \Rightarrow (3,6)$$

5

3

-2

2

5

-3 -2 -1

EXAMPLE 2 Finding the Focus and Directrix of a Parabola

Find the focus and directrix of the parabola given by $x^2 = -8y$. Then graph the parabola.

Directrix: 4-2 Focus: (0,-2)

$$\chi^{2} = -8(-2) = 16$$
 $\chi = \pm 4$
 $(4, -2)(-4, -7)$

EXAMPLE 3 Finding the Equation of a Parabola from Its Focus

Pinu the standard form of the equation of a parabola with focus (5, 0) and directrix x = -5, shown in Figure 9.35. $\begin{array}{c}
\lambda \\
\gamma \\
\gamma \\
\gamma
\end{array}$ opposite of Aircut γ

Apr 29-7:45 AM

Horizontal

$$(y-k)^2 = 4p(x-h)$$

(h, k)

$$(h + p, k)$$

$$x = h - p$$

Vertical

$$(x-h)^2 = 4p(y-k)$$

Vertex

Focus

Directrix

(h, k)

$$(h, k + p)$$

$$y = k - p$$

EXAMPLE 4 Graphing a Parabola with Vertex at (h, k)

Find the vertex, focus, and directrix of the parabola given by

$$(x-3)^2 = 8(y+1)$$
. Ver +ica

Then graph the parabola.

$$h=3$$
 $k=-1$ $Vectex: (3,-1)$
 $Piccetrix: y=k-p$ $4p=8$
 $y=-1-2=-3$ $p=2$
Focus: $(h, k+p)=(3,-1+2)=(3,1)$
Additional points: $(x-3)^2=8(y+1)$
 $(x-3)^2=8(2)$
 $(x-3)^2=16$
 $x-3=\pm4$
 $x=4+3=7$ $x=-4+3=-1$

Graphing a Parabola with Vertex at (h, k)

Find the vertex, focus, and directrix of the parabola given by

$$y^2 + 2y + 12x - 23 = 0.$$

Then graph the parabola.

$$\left(\frac{2}{2}\right)^2 = \left(1\right)^2 = 1$$

$$y^{2} + Zy + | = -|Zx + Z3 + |$$

$$(y+1)^{2} = -|Zx + Z4|$$

$$(y+1)^2 = -12(x-2)$$
Continue as usual

9.3 The Parabola 4-29	May 08, 2019
010 1110 1 drubblu + 20	ay 00, 20 1

