9.3 Parabola

Definition of a Parabola
A parabola is the set of all points in a plane that are equidistant from a fixed line, the directrix, and a fixed point, the focus, that is not on the line (see Figure 9.29).

Standard Forms of the Equations of a Parabola

The standard form of the equation of a parabola with vertex at the origin is

$$
y^{2}=4 p x \quad \text { or } \quad x^{2}=4 p y
$$

Figure 9.31(a) at the top of the next page illustrates that for the equation on the left, the focus is on the x-axis, which is the axis of symmetry. Figure 9.31(b) illustrates that for the equation on the right, the focus is on the y-axis, which is the axis of symmetry.

EXAMPLE 1 Finding the Focus and Directrix of a Parabola

Find the focus and directrix of the parabola given by $y^{2}=12 x$. Then graph the parabola.

$$
\begin{aligned}
& y^{2}=4_{p x} \\
& 12=4_{p} \\
& p=3 \\
& \text { Focus: } 3,0) \\
& \text { Directrix: } x=-3
\end{aligned}
$$

$$
y^{2}=12 x
$$

$$
y^{2}=12(3)=36
$$

$$
y= \pm 6 \rightarrow(3,6)(3,-6)
$$

EXAMPLE 2 Finding the Focus and Directrix of a Parabola

Find the focus and directrix of the parabola given by $x^{2}=-8 y$. Then graph the parabola.

$$
\begin{aligned}
& -8=4 p \\
& p=-2 \\
& \text { Directrix: } y=2 \\
& \text { Focus: }(0,-2)
\end{aligned}
$$

$$
x^{2}=-8(-2)=16
$$

$$
x= \pm 4
$$

$$
(4,-2) \quad(-4,-7)
$$

EXAMPLE 3 Finding the Equation of a Parabola from Its Focus and Directrix
Find the standard form of the equation of a Horizontal parabola with focus $(5,0)$ and directrix $x=-5$, shown in Figure 9.35.

$\underbrace{5}_{\text {opposite }}$ f directrix

$$
\text { Hori } 20 \text { natal }
$$

Horizontal

$$
(y-k)^{2}=4 p(x-h)
$$

(h, k)
$(h+p, k)$
$x=h-p$

Directrix
Vertical

$$
(x-h)^{2}=4 p(y-k)
$$

Vertex
(h, k)
Focus
$(h, k+p)$
$y=k-p$

EXAMPLE 4 Graphing a Parabola with Vertex at (h, k)
Find the vertex, focus, and directrix of the parabola given by

$$
(x-3)^{2}=8(y+1) \quad \text { vertical }
$$

Then graph the parabola.

$$
\begin{aligned}
& h=3 \quad k=-1 \quad \text { vertex: }(3,-1) \\
& \text { Directrix: } y=k-p \quad 4 p=8 \\
& y=-1-2=-3 \quad p=2 \\
& \begin{array}{l}
\text { Focus: }(h, k+p)=(3,-1+2)=(3,1) \\
\text { Additional points: }(x-3)^{2}=8(y+1)
\end{array} \\
& (x-3)^{2}=8(2) \\
& (x-3)^{2}=16 \\
& x-3= \pm 4 \\
& x=4+3=7 \quad x=-4+3=-1 \\
& (7,1) \text { and }(-1,1)
\end{aligned}
$$

EXAMPLE 5 Graphing a Parabola with Vertex at (h, k)
Find the vertex, focus, and directrix of the parabola given by

$$
y^{2}+2 y+12 x-23=0 .
$$

Then graph the parabola. 2

$$
\left(\frac{2}{2}\right)^{2}=(1)^{2}=1
$$

$$
y^{2}+2 y+1=-12 x+23+1
$$

$$
(y+1)^{2}=-12 x+24
$$

$$
(y+1)^{2}=-12(x-2)
$$

Continue as usual

Applications

Suspension bridge

FIGURE 9.39(a) Parabolic surface reflecting light

Arch bridge

FIGURE 9.39(b) Light from the focus is reflected parallel to the axis of symmetry.

\square

