9.2 Hyperbolas

Definition: Set of all points whose distance from two central locations always subtracts to the same value.

$$d_1 - d_2 = d_3 - d_4$$

Hyperbola:

equation is similar to th *ellipse* except it's **subtract** instead of **add**

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

horizontal axis

vertical axis

differences between horizontal and vertical:

- transverse axis changes from horiz to vert
- in the equation:
 - > x^2 and y^2 swap places

and

- > a² and b² swap places
- The positive term tells you horizontal or vertical. a stays with x and b stays with y.

For hyperbolas:

- x^2 and y^2 can trade places vert/horiz
- \rightarrow if x^2 is positive (usually left) it's horizontal
- » if y² is positive (usually left) it's vertical

EXAMPLE 1 Finding Vertices and Foci from a Hyperbola's Equation

Find the vertices and locate the foci for each of the following hyperbolas with the given equation:

a.
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

a.
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
 b. $\frac{y^2}{9} - \frac{x^2}{16} = 1$.

horizontal vertical

vertices: (± a,0) vertices: (0, ± b)

$$(-4,0)$$

$$b^{2} = 9$$
 b^{-3}
 $verties: (0,3) (0,-3)$

$$50$$
: $(0,5)$

$$\begin{array}{c} 2 = 2 + 6^{7} \\ 2 = 16 + 9 = 25 \\ 2 = 5 \\ -5 = 5 \end{array}$$

$$(5,0)(-5,0)$$

EXAMPLE 2 Finding the Equation of a Hyperbola from Its Foci and Vertices

Find the standard form of the equation of a hyperbola with foci at (0, -3) and (0, 3)and vertices (0, -2) and (0, 2), shown in **Figure 9.19**.

$$c = 3$$
 $c^2 = 9$

$$c^2 = 4^2 + 5^2$$

$$\frac{3}{4} - \frac{x^2}{5} = 1$$

Asymptotes of a Hyperbola

The asymptotes pass through the center of the hyperbola

Slope of the asymptotes:

$$y = \pm \frac{b}{a}$$

Graphing Hyperbolas

- 1. Determine and graph the vertices
- 2. Determine and graph the asymptotes
- 3. Draw the two branches going through the vertices and approaching the asymptotes

EXAMPLE 3 Graphing a Hyperbola

Slope

Graph and locate the foci: $\frac{x^2}{25} - \frac{y^2}{16} = 1$. What are the equations of the asymptotes?

horizontal

vertices: (±5,0)

C=25+ 16 = 41

FOL: (+ 141,0)

a=5 b=4

Slope of Asymptotes: + 4

5

EXAMPLE 4 Graphing a Hyperbola

Graph and locate the foci: $9y^2 - 4x^2 = 36$. What are the equations of the asymptotes? $36 \quad 36 \quad 36$

We are not going to graph this one, but how would you put it in standard form to be able to graph it?

$$\frac{y^2}{4} - \frac{x^2}{9} = 1$$

$$\frac{x^2}{4} - \frac{x^2}{9} = 1$$

Horizontal Center: (h,k) Vertical
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

$$\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1$$

$$c^2 = a^2 + b^2$$

$$c^2 = a^2 + b^2$$

$$(h \pm a, k) \leftarrow \text{Vertices} \rightarrow (h, k \pm b)$$

$$y = \pm \frac{b}{a} \leftarrow \text{Asymptotes} \rightarrow y = \pm \frac{b}{a}$$

$$(h \pm c, k) \leftarrow \text{Foci} \rightarrow (h, k \pm c)$$

EXAMPLE 5 Graphing a Hyperbola Centered at (h, k)

Graph: $\frac{(x-2)^2}{16} - \frac{(y-3)^2}{9} = 1$. Where are the foci located? What are the equations of the asymptotes?

Center:
$$(2,3)$$
 $a^2 = 16$ $b^2 = 6$

Vertices: $(2 \pm 4,3)$ $a = 4$ $b = 3$
 $(6,3)$ $(-2,3)$ $c^2 = 16 + 9 = 25$
 $(6,3)$ $(-2,3)$ $c = 5$

Foli: $(2 \pm 5,3)$
 $(7,3)$ $(-3,3)$
 $(7,3)$ $(-3,3)$
 $(7,3)$ $(-3,3)$

Check Point 5 Graph: $\frac{(x-3)^2}{4} - \frac{(y-1)^2}{1} = 1$. Where are the foci located? What are the equations of the asymptotes?

EXAMPLE 6 Graphing a Hyperbola Centered at (h, k)

Graph: $4x^2 - 24x - 25y^2 + 250y - 489 = 0$. Where are the foci located? What are the equations of the asymptotes?

$$4x^{2}-24x-25y^{2}+250y=489$$

$$4(x^{2}-6x)-25(y^{2}-10y)=489$$

$$(-6)^{2}=(-3)^{2}=9(-10y)=25$$

$$4(x^{2}-6x+9)-25(y^{2}-10y+25)=489\cdot36-625$$

$$4(x-3)^{2}-25(y-5)^{2}=-100$$

$$-100$$

$$-(x-3)^{2}+(y-5)^{2}=1$$

Write $4x^2 - 24x - 9y^2 - 90y - 153 = 0$. in standard hyperbolic form.

EXAMPLE 7 An Application Involving Hyperbolas

An explosion is recorded by two microphones that are 2 miles apart. Microphone M_1 received the sound 4 seconds before microphone M_2 . Assuming sound travels at 1100 feet per second, determine the possible locations of the explosion relative to the location of the microphones.

Create a hyperbolic function to model the situation.

Note: In developing the standard form of the hyperbola, they found that the difference of the distances from the foci is the equal to 2a.

Pg. 945 #1-6, 14-24 even, 34-46 even,