9.2 Hyperbolas

Definition: Set of all points whose distance from two central locations always subtracts to the same value.

Hyperbola:

equation is similar to th ellipse except it's subtract instead of add
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$
horízontal axis
vertical axis
differences between horizontal and vertical:

- transverse axis changes from horiz to vert
- in the equation:
> x^{2} and y^{2} swap places
and
> a^{2} and b^{2} swap places
- The positive term tells you horizontal or vertical. a stays with x and b stays with y.

For hyperbolas:

» x^{2} and y^{2} can trade places - vert/hariz
" if x^{2} is pasitive (usually left) it's harizontal
" if y^{2} is positive (usually left) it's vertical

For hyperbola, the the relationship between $a, b, \& c$ changes. We now use: $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$

EXAMPLE 1 Finding Vertices and Foci from a Hyperbola's Equation Find the vertices and locate the foci for each of the following hyperbolas with the given equation:

$$
\begin{aligned}
& \text { a. } \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 \\
& \text { b. } \frac{y^{2}}{9}-\frac{x^{2}}{16}=1 \text {. } \\
& \text { horizontal } \\
& \text { vertical } \\
& \text { vertices: }(\pm a, 0) \\
& a^{2}=16 \quad a=4 \\
& \text { vertices: }(4,0) \\
& (-4,0) \\
& c^{2}=a^{2}+b^{2} \\
& c^{2}=16+9=25 \\
& c=5 \\
& \text { loci: }(5,0)(-5,0)
\end{aligned}
$$

EXAMPLE 2 Finding the Equation of a Hyperbola from Its Foci and Vertices

Find the standard form of the equation of a hyperbola with foci at $(0,-3)$ and $(0,3)$ and vertices $(0,-2)$ and $(0,2)$, shown in Figure 9.19.

$$
\begin{array}{lll}
\text { vertical } & b=2 & b^{2}=4 \\
c=3 & c^{2}=9 & \\
c^{2}=a^{2}+b^{2} & 9=a^{2}+4 \\
& a^{2}=5
\end{array}
$$

Asymptotes of a Hyperbola

The asymptotes pass through the center of the hyperbola

Slope of the asymptotes:

$y= \pm \frac{b}{a}$

Graphing Hyperbolas

1. Determine and graph the vertices
2. Determine and graph the asymptotes
3. Draw the two branches going through the vertices and approaching the asymptotes

EXAMPLE 3 Graphing a Hyperbola
Slope
Graph and locate the foci: $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$. What are the elquartionsef the asymptotes?

$$
\text { vertices: }(\pm 5,0) \quad a^{2}=25
$$

$$
c^{2}=25+16=41 \quad c=\sqrt{41}
$$

$$
\text { FOL: }(\pm \sqrt{41}, 0)
$$

$$
a=5 \quad b=4
$$

slope of Asymptotes: $\pm \frac{1}{5}$

EXAMPLE 4 Graphing a Hyperbola

Graph and locate the foci: $\underline{y y}^{2}-\frac{4 x^{2}}{36}=\frac{36}{3}$. What are the equations of the asymptotes?

$$
\overline{36} \quad \overline{36} \quad \overline{36}
$$

We are not going to graph this one, but how would you put it in standard form to be able to graph it?

vertical

$b^{2}=4$
$a^{2}=9$
$b=2$
$a=3$

Slope of Asymptote:

$$
\begin{array}{|ll}
\begin{array}{ll}
\text { Horizontal } & \text { Center: }(\mathrm{h}, \mathrm{k}) \\
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 & \frac{\text { Vertical }}{(y-k)^{2}} \\
b^{2} \\
c^{2}=a^{2}+b^{2} & c^{2}=a^{2}+b^{2} \\
a^{2}
\end{array} \\
(h \pm a, k) \longrightarrow \text { Vertices } & (h, k \pm b) \\
y= \pm \frac{b}{a} \longrightarrow \text { Asympestotes } \longrightarrow y= \pm \frac{b}{a}
\end{array}
$$

EXAMPLE 5 Graphing a Hyperbola Centered at (h, k)
Graph: $\frac{(x-2)^{2}}{16}-\frac{(y-3)^{2}}{9}=1$. Where are the foci located? What are the equations of the asymptotes? hariz on \mid al
 $(6,3) \quad(-2,3)$ $a^{2}=16$

$$
a=4 \quad b=3
$$

Pori: $(2 \pm 5,3)$

Slopes of Asymptotes: $\pm \frac{3}{4}$

$\$$ Check Point 5 Graph: $\frac{(x-3)^{2}}{4}-\frac{(y-1)^{2}}{1}=1$. Where are the foci located? What are the equations of the asymptotes?
Center! $(3,1) \quad a=2=1$
$\begin{aligned} & \text { vertices: }(5,1)(1,1) \quad c^{2}=5 \\ & C=\sqrt{5}\end{aligned}$
Foci: $(3 \pm \sqrt{5}, 1)$
Slope of A: $\pm \frac{1}{2}$

EXAMPLE 6 Graphing a Hyperbola Centered at (h, k) Graph: $4 x^{2}-24 x-25 y^{2}+250 y-489=0$. Where are the foci located? What are the equations of the asymptotes?

$$
\begin{aligned}
& 4 x^{2}-24 x-25 y^{2}+250 y=489 \\
& 4\left(x^{2}-6 x\right)-25\left(y^{2}-10 y\right)=489 \\
& \left(\frac{-6}{2}\right)^{2}=(-3)^{2}=9 \quad\left(\frac{-10}{2}\right)^{2}=(-5)^{2}=25 \\
& 4\left(x^{2}-6 x+9\right)-25\left(y^{2}-10 y+25\right)=489+36-125 \\
& \frac{4(x-3)^{2}}{-100}-\frac{25(y-5)^{2}}{-100}=\frac{-100}{-100} \\
& -\frac{(x-3)^{2}}{25}+\frac{(y-5)^{2}}{4}=1
\end{aligned}
$$

Write $4 x^{2}-24 x-9 y^{2}-90 y-153=0$. in standard
hyperbolic form.

Applications

The hyperbolic shape of a sonic boom

Orbits of comets

EXAMPLE 7 An Application Involving Hyperbolas

An explosion is recorded by two microphones that are 2 miles apart. Microphone M_{1} received the sound 4 seconds before microphone M_{2}. Assuming sound travels at 1100 feet per second, determine the possible locations of the explosion relative to the location of the microphones.
Create a hyperbolic function to model the situation. ${ }^{y}$
Note: In developing the standard form of the hyperbola, they found that the difference of the distances from the foci is the equal to $2 a$.

HW

Pg. 945 \#1-6, 14-24 even, 34-46 even,

