9.1 The Ellipse

Mathematics is present in the movements of planets, bridge and tunnel construction, navigational systems used to keep track of a ship's location, manufacture of lenses for telescopes, and even in a procedure for disintegrating kidney stones. The mathematics behind these applications involves conic sections. Conic sections are curves that result from the intersection of a right circular cone and a plane. Figure 9.1 illustrates the four conic sections: the circle, the ellipse, the parabola, and the hyperbola.

FIGURE 9.1 Obtaining the conic sections by intersecting a plane and a cone

We have investigated graphs of circles and their equations.

Similar to these equations are those of the ellipse.
Standard Form of an ellipse:

Vocab you need to know:

- focus (plural is farci)
- center
- vertex (plural is vertices) point of
- major axis

- minor axis

axis

Definition of an Ellipse

An ellipse is the set of all points, P, in a plane the sum of whose distances from two fixed points, F_{1} and F_{2}, is constant (see Figure 9.3). These two fixed points are called the foci (plural of focus). The midpoint of the segment connecting the foci is the center of the ellipse.
x-intercepts: Set $y=0 . \quad y$-intercepts: Set $x=0$.

$$
\begin{array}{rlrl}
\frac{x^{2}}{a^{2}} & =1 & \frac{y^{2}}{b^{2}} & =1 \\
x^{2} & =a^{2} & y^{2} & =b^{2} \\
x & = \pm a & y & = \pm b
\end{array}
$$

FIGURE 9.5

Major axis $=$ longer one of the two axes
Vertex = one at each end of the major axis (it's on the line)

Vertex
FIGURE 9.4 Horizontal and vertical elongations of an ellipse

Figure 9.6 illustrates that the vertices are on the major axis, a units from the center. The foci are on the major axis, c units from the center. For both equations, $b^{2}=a^{2}-c^{2}$. Equivalently, $c^{2}=a^{2}-b^{2} . \rightarrow$ Foci $a^{2}>b^{2}$

FIGURE 9.6(a) Major axis is horizontal with length $2 a$.

FIGURE 9.6(b) Major axis is vertical with length $2 a$.

Question: How do you know when a^{2} is on the left or the right?
Answer: a^{2} is always the larger denominator

EXAMPLE 1 Graphing an Ellipse Centered at the Origin Graph and locate the foci: $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. horizontal: Bigger \# under x.

$$
a^{2}=9
$$

$$
b^{2}=4
$$

$$
\begin{array}{ll}
x \text {-int: } \pm 3 & y \text {-int: } \pm 2 \\
c^{2}=a^{2}-b^{2}=9-4=5
\end{array}
$$

Center: $(0,0)$

$$
c= \pm \sqrt{5}= \pm 2.24
$$

EXAMPLE 2 Graphing an Ellipse Centered at the Origin Graph and locate the foci: $\frac{25 x^{2}}{400}+\frac{16 y^{2}}{400}=\frac{400 .}{400} \rightarrow$ Must $=1$

$$
\frac{x^{2}}{16}+\frac{y^{2}}{25}=1 \text { vertical }
$$

