6.6 Vectors (directed line segments) Vector: magnitude and direction V Slope of vedor distance from the initial point to the terminal point. $= \int \Delta x^2 + \Delta y^2$ $\sqrt{(X_1-X_2)^2+(y_1-y_2)^2}$ or Pythagorean Th. Scalar: just a number only magnitude No direction Notation: V: vector V ||v||: magnitude of v

Equal Vectors: Same magnitude and same direction

6.6 Vectors 3-11

$$\vec{u}: \text{ Initial Point: (-3,-3)} \\ \text{Terminal Point: (0,3)} \\ \vec{v}: \text{ Initial Point: (0,0)} \\ \text{Terminal Point: (3,6)} \\ \text{Show that } \vec{u} = \vec{v} \\ \vec{u}: \vec{d} = \sqrt{(-3-0)^2 + (-3-3)^2} \\ \sqrt{(-3)^2 + (-6)^2} = \sqrt{9} + 36 = \sqrt{45} \\ \sqrt{(-3)^2 + (-6)^2} = \sqrt{9} + 36 = \sqrt{45} \\ \sqrt{(-3)^2 + (-6)^2} = \sqrt{9} + 36 = \sqrt{45} \\ \vec{v}: \vec{\Delta} \vec{x} = \vec{3} \sqrt{5} \\ \vec{v}: \vec{\delta} \vec{v} = \frac{-3-3}{x_2 - x_1} = \frac{\vec{\Delta} \cdot \vec{y}}{\vec{\Delta} \times} \\ \vec{v}: \vec{s} \log e = \frac{-3-3}{-3} = \frac{-6}{-3} = 2 \\ \vec{v}: \vec{s} \log e = \frac{6-0}{3-0} = \frac{6}{3} = 2 \\ \text{Magnitude and direction are the same, so } \vec{u} = \vec{v} \end{aligned}$$

Mar 11-1:07 PM

Scalar Multiplication: Multiply the magnitude by a number positive scalar: change magnitude, but not direction Regative scalar: changes magnitude, flips the direction

resultant vector Vector addition 7 U vector addition: in tial point of One vector is the same as the terminal point of another. $\vec{V} - \vec{U} = \vec{V} + (-\vec{U})$ Ī

$$v = ai + bj$$

$$a = \Delta x \qquad b = \Delta y$$

$$(x_2 - x_1) \qquad (y_2 - y_1)$$

$$v = \langle a, b \rangle$$
this notation is always the vector with the initial point at the origin.
$$\|v\| = \sqrt{a^2 + b^2}$$
Multiply with the initial point at the origin.

Check Point 3 Let v be the vector from initial point $P_1 = (-1, 3)$ to terminal point $P_2 = (2, 7)$. Write v in terms of i and j.

$$a = 2 - (-1) = 3$$

$$b = 7 - 3 = 4$$

$$v = 3i + 4j$$

EXAMPLE 6 Vector Operations
If
$$\mathbf{v} = 5\mathbf{i} + 4\mathbf{j}$$
 and $\mathbf{w} = 6\mathbf{i} - 9\mathbf{j}$, find $4\mathbf{v} - 2\mathbf{w}$.
 $4_{V} = 4(5\mathbf{i} + 4\mathbf{j}) = 20\mathbf{i} + 16\mathbf{j}$
 $-2\omega = -2(6\mathbf{i} - 9\mathbf{j}) = -12\mathbf{i} + 18\mathbf{j}$
 $8\mathbf{i} + 34\mathbf{j}$

30; +33)

The Zero Vector

The vector whose magnitude is 0 is called the **zero vector**, **0**. The zero vector is assigned no direction. It can be expressed in terms of **i** and **j** using

 $\mathbf{0} = \mathbf{0}\mathbf{i} + \mathbf{0}\mathbf{j}.$

Properties of Vector Addition and Scalar Multiplication

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors, and c and d are scalars, then the following properties are true.

Vector Addition Properties

1. $u + v = v + u$	Commutative property
2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$	Associative property
3. $u + 0 = 0 + u = u$	Additive identity
4. $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = 0$	Additive inverse
Scalar Multiplication Properties	
$1. \ (cd)\mathbf{u} = c(d\mathbf{u})$	Associative property
$2. c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$	Distributive property
$3. (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$	Distributive property
4. 1 u = u	Multiplicative identity
5. $0\mathbf{u} = 0$	Multiplication property of zero
$6. \ c \mathbf{v} \ = \ c \ \ \mathbf{v} \ $	Magnitude property

A unit vector is defined to be a vector whose magnitude is one.

Finding the Unit Vector that Has the Same Direction as a Given Nonzero Vector v

For any nonzero vector v, the vector

$\frac{\mathbf{v}}{\|\mathbf{v}\|}$

is the unit vector that has the same direction as **v**. To find this vector, divide **v** by its magnitude.

A vector that represents the direction and speed of an object in motion is called a **velocity vector**

Example:

The wind is blowing at 20 miles per hour in the direction N30°W. Express its velocity as a vector **v** in terms of **i** and **j**.

Example:

$$u = 3i - 6j \quad v = -2i + j$$
Find $||u - v||^{2} + ||u + v||^{2}$

$$u - v = (3i - 6j) - (-2i + j)$$

$$3i - 6j + 2i - j - 5i - 7j$$

$$u + v = (3i - 6j) + (-2i + j) = i - 5j$$

$$||u - v||^{2} = (\sqrt{5^{2} + (-7)^{2}} = 74)$$

$$||u + v||^{2} = (\sqrt{1^{2} + (-5)^{2}})^{2} = 26$$

$$74 + 26 = (00)$$

Assignment pgs. 750-751:

#1, 5, 9, 13, 17, 23, 27, 31, 37, 41, 45, 47, 49

