

\vec{u} : Initial Point $(-3,-3)$
Terminal Point: $(0,3)$
\vec{V} : Initial Point: $(0,0)$
Terminal Point: $(3,6)$
Show that $\vec{v}=\vec{v}$

$$
\begin{gathered}
\vec{u}: d=\sqrt{(-3-0)^{2}+(-3-3)^{2}} \\
\sqrt{(-3)^{2}+(-6)^{2}}=\sqrt{9+36}=\sqrt{45} \\
\sqrt{45}=3 \sqrt{5} \\
\vec{v}: \Delta x=3 \quad \Delta y=6 \\
\|\vec{v}\|=\sqrt{9+36}=\sqrt{45}=3 \sqrt{5}
\end{gathered}
$$

direction: slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}$

$$
\begin{aligned}
& \vec{u} \text { slope }=\frac{-3-3}{-3-0}=\frac{-6}{-3}=2 \\
& \vec{v} \text { slope }=\frac{6-0}{3-0}=\frac{6}{3}=2
\end{aligned}
$$

Magnitu de and direction are the same, so $\vec{u}=\vec{V}$

$$
\left.\begin{array}{r}
\text { Scalar multiplication: multiply the } \\
\text { magnitude by } \\
\text { a number }
\end{array}\right\} \begin{array}{r}
\text { positive Scalar: change magnitude, } \\
\text { but not direction } \\
\text { negative scalar: changes magnitude, } \\
\text { flips the direction }
\end{array}
$$

Vector addition resultant vector

$$
\frac{u}{\vec{u}}
$$

vector addition: in tidal point of one vector is the same as the terminal point of another.

$$
\begin{aligned}
& \vec{v}-\vec{u}=\vec{v}+(-\vec{u}) \\
& \vec{v}-\vec{u} \underbrace{-\vec{u}}_{\vec{u}}
\end{aligned}
$$

The i and j Unit Vectors

Vector \mathbf{i} is the unit vector whose direction is along the positive x-axis. Vector \mathbf{j} is the unit vector whose direction is along the positive y-axis.

$$
\begin{aligned}
& v=a i+b j \\
& \underset{\left(x_{2}-x_{1}\right)}{a=\Delta x} \quad \underset{\left(y_{2}-y_{1}\right)}{ } \\
& \text { Terminal point: } \\
& \text { (} \mathrm{x}_{2}, \mathrm{y}_{2} \text {) } \\
& \left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \\
& \text { Terminal point: } \\
& \text { (} \mathrm{x}_{2}, \mathrm{y}_{2} \text {) } \\
& \cdot V=\langle a, b\rangle \begin{array}{l}
\text { this notation is always the vector } \\
\text { with the initial point at the origin. }
\end{array} \\
& \|v\|=\sqrt{\mathrm{a}^{2}+b^{2}} \text { mannitude }
\end{aligned}
$$

EXAMPLE 2 Representing a Vector in Rectangular Coordinates and Finding Its Magnitude

Sketch the vector $\mathbf{v}=-3 \mathbf{i}+4 \mathbf{j}$ and find its magnitude.

$$
\begin{aligned}
& \|v\|=\sqrt{(-3)^{2}+(4)^{2}} \\
& \quad \sqrt{25}=5 \\
& \|v\|=5
\end{aligned}
$$

EXAMPLE 3 Representing a Vector in Rectangular Coordinates
Let \mathbf{v} be the vector from initial point $P_{1}=(3,-1)$ to terminal point $P_{2}=(-2,5)$. Write \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.

$$
a=\Delta x=\left(x_{2}-x_{1}\right)=-2-3=-5
$$

$$
b=\Delta y=\left(y_{2}-y_{1}\right)=5-(-1)=6
$$

$$
v=-5 i+6)
$$

\varnothing Check Point 3 Let \mathbf{v} be the vector from initial point $P_{1}=(-1,3)$ to terminal point $P_{2}=(2,7)$. Write \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.

$$
\begin{aligned}
& a=2-(-1)=3 \\
& b=7-3=4 \\
& v=3 i+4
\end{aligned}
$$

Adding and Subtracting Vectors in Terms of i and j

$$
\begin{array}{rlrl}
\text { If } \mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j} \text { and } \mathbf{w}=a_{2} \mathbf{i}+b_{2} \mathbf{j} \text {, then Combine li te } \\
\mathbf{v}+\mathbf{w} & =\left(a_{1}+a_{2}\right) \mathbf{i}+\left(b_{1}+b_{2}\right) \mathbf{j} \\
\mathbf{v}-\mathbf{w} & =\left(a_{1}-a_{2}\right) \mathbf{i}+\left(b_{1}-b_{2}\right) \mathbf{j} . & \text { terms }
\end{array}
$$

Scalar Multiplication with a Vector in Terms of i and j If $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$ and k is a real number, then the scalar multiplication of the vector \mathbf{v} and the scalar k is

$$
k \mathbf{v}=(k a) \mathbf{i}+(k b) \mathbf{j}
$$

Distribute

EXAMPLE 4 Adding and Subtracting Vectors
If $\mathbf{v}=5 \mathbf{i}+4 \mathbf{j}$ and $\mathbf{w}=6 \mathbf{i}-9 \mathbf{j}$, find each of the following vectors:
a. $\mathbf{v}+\mathbf{w}$
b. $\mathbf{v}-\mathbf{w}$.

$$
\text { a) } \begin{aligned}
v+w= & (5 i+4 j)+(6 i-9 j) \\
v+w= & 11 i-5 j \\
\text { b) } v-w= & (5 i+4 j)-(6 i-9 j) \\
& 5 i+4 j-6 i+9 j \\
& -i+13)
\end{aligned}
$$

EXAMPLE 6 Vector Operations

If $\mathbf{v}=5 \mathbf{i}+4 \mathbf{j}$ and $\mathbf{w}=6 \mathbf{i}-9 \mathbf{j}$, find $4 \mathbf{v}-2 \mathbf{w}$.

$$
\begin{aligned}
4_{v}=4(5 i+4)= & 20 i+16 \\
-2 w=-2(6 i-9)= & -12 i+18) \\
& 8 i+34 i
\end{aligned}
$$

\circlearrowleft Check Point 6 If $\mathbf{v}=7 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{w}=4 \mathbf{i}-5 \mathbf{j}$, find $6 \mathbf{v}-3 \mathbf{w}$.

The Zero Vector
The vector whose magnitude is 0 is called the zero vector, 0 . The zero vector is assigned no direction. It can be expressed in terms of \mathbf{i} and \mathbf{j} using

$$
\mathbf{0}=0 \mathbf{i}+0 \mathbf{j}
$$

Properties of Vector Addition and Scalar Multiplication
If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors, and c and d are scalars, then the following properties are true.
Vector Addition Properties

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \quad$ Commutative property
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ Associative property
3. $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u} \quad$ Additive identity
4. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+\mathbf{u}=\mathbf{0} \quad$ Additive inverse

Scalar Multiplication Properties

1. $(c d) \mathbf{u}=c(d \mathbf{u}) \quad$ Associative property
2. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v} \quad$ Distributive property
3. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u} \quad$ Distributive property
4. $1 \mathbf{u}=\mathbf{u} \quad$ Multiplicative identity
5. $0 \mathbf{u}=\mathbf{0} \quad$ Multiplication property of zero
6. $\|c \mathbf{v}\|=|c|\|\mathbf{v}\| \quad$ Magnitude property

A unit vector is defined to be a vector whose magnitude is one.
Finding the Unit Vector that Has the Same Direction as a Given Nonzero Vector v
For any nonzero vector \mathbf{v}, the vector

$$
\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

is the unit vector that has the same direction as \mathbf{v}. To find this vector, divide \mathbf{v} by its magnitude.

EXAMPLE 7 Finding a Unit Vector
Find the unit vector in the same direction as $\mathbf{v}=5 \mathbf{i}-12 \mathbf{j}$. Then verify that the vector has magnitude 1.

$$
\begin{aligned}
& \|v\|=\sqrt{5^{2}+(-12)^{2}} \\
& \\
& \sqrt{25+144}=\sqrt{169}=13 \\
& \|v\|=13 \\
& \text { unit vector }=\frac{v}{1\|v\|}=\frac{5 ;-12 j}{13} \\
& \left.a=\frac{3}{13} \quad \text { unit vector } \frac{5}{13} ;-\frac{12}{13}\right) \\
& b=-\frac{12}{13} \\
& \| \text { unit vector } \|=\sqrt{\left(\frac{5}{13}\right)^{2}+\left(-\frac{12}{13}\right)^{2}} \\
& \\
& \quad \sqrt{\frac{25}{169}+\frac{144}{169}}=\sqrt{\frac{169}{169}}=1
\end{aligned}
$$

$\$$ Check Point 7 Find the unit vector in the same direction as $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$. Then verify that the vector has magnitude 1 .

$$
\begin{aligned}
& \text { unit vector }=u=\frac{v}{\|v\|} \\
& \|v\|=\sqrt{a^{2}+b^{2}}=\sqrt{4^{2}+(-3)^{2}}=\sqrt{25}=5 \\
& u=\frac{4 i-3 i}{5}=\frac{4}{5}=\sqrt{\left(\frac{4}{5}\right)^{2}+\left(-\frac{3}{5}\right)^{2}}=\sqrt{\frac{16}{25}+\frac{9}{25}}=\sqrt{1}=1
\end{aligned}
$$

Thus,

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j}=\|\mathbf{v}\| \cos \theta \mathbf{i}+\|\mathbf{v}\| \sin \theta \mathbf{j}
$$

Writing a Vector in Terms of Its Magnitude and Direction
Let \mathbf{v} be a nonzero vector. If θ is the direction angle measured from the positive x-axis to \mathbf{v}, then the vector can be expressed in terms of its magnitude and direction angle as

$$
\mathbf{v}=\|\mathbf{v}\| \cos \theta \mathbf{i}+\|\mathbf{v}\| \sin \theta \mathbf{j}
$$

A vector that represents the direction and speed of an object in motion is called a velocity vector Example:
The wind is blowing at 20 miles per hour in the direction $\mathrm{N} 30^{\circ} \mathrm{W}$. Express its velocity as a vector \mathbf{v} in terms of \mathbf{i} and \mathbf{j}.

$$
\begin{aligned}
& a=-10 \\
& b=\|v\| \sin \theta=20 \sin 120 \\
& 20\left(\frac{\sqrt{3}}{2}\right)=10 \sqrt{3}
\end{aligned}
$$

$$
v=-10 i+10 \sqrt{3} j
$$

Example:
$u=3 i-6 j \quad v=-2 i+j$
Find $\|u-v\|^{2}+\|u+v\|^{2}$

$$
u-v=(3 i-6 j)-(-2 i+j)
$$

$$
2 i-(0 i+2 i-j-7
$$

$$
\begin{aligned}
& u+v=(3 i-6 j)+(-2 i+j)=i-5 j \\
& \|u-v\|^{2}=\left(\sqrt{5^{2}+(-7)^{2}}\right)^{2}=74 \\
& \|u+v\|^{2}=\left(\sqrt{1^{2}+(-5)^{2}}\right)^{2}=26 \\
& 74+26=100
\end{aligned}
$$

Assignment pgs. 750-751:
\#1, 5, 9, 13, 17, 23, 27, 31, 37, 41, 45, 47, 49

